自动驾驶,自动驾驶汽车,自动驾驶技术

何时能到L5级 自动驾驶技术原理以及难点解读

其实单纯从硬件技术层面来看,自动驾驶的原理并不执行特别复杂。用最简单的话说,找一辆车子来改装一下(电动车比较好改一点且性能可控性更好),加几个感测器,再塞一套开源的自动驾

其实单纯从硬件技术层面来看,自动驾驶的原理并不执行特别复杂。用最简单的话说,找一辆车子来改装一下(电动车比较好改一点且性能可控性更好),加几个感测器,再塞一套开源的自动驾驶计算平台,好,这就搞定了。
 
感测器
 
感测器是自动驾驶车的眼睛,用于收集汽车周围的资讯。归纳来看,目前主流的自动驾驶车其实也就是使用3种感测器:LiDAR光学雷达、镜头和传统雷达。
 
3种感测器各有各的优势,早就运用在车辆倒车雷达上的传统雷达成本相对较低,穿透性较强且不受雨尘等环境的影响,但弱点在于覆盖范围较小,且难以对周围物体做出精准的判断。LiDAR光学雷达的优势在于可以透过旋转的激光射线束,构造出车辆周围的3D影像图,但缺点是由于激光的特性,容易受到雨、尘埃、雾的影响。由于光学雷达加工难度比较高、产量小,所以售价最贵。一颗64线光学雷达的售价就得4、50万人民币。
 
镜头同样也是自动驾驶车所必备的感测器,与两种雷达不同,镜头没有任何穿透力及需要光线,用于自动驾驶的数据是透过对镜头的图样辨识得出的。不过镜头也是最容易受到干扰的一种自动驾驶感测器,且一旦获得的图像有误差,对最终的辨识结果就会产生极大的影响。唯一的好处在于成本低,且目前视觉辨识的方案,做无人驾驶汽车可用的也比较多。
 
资料处理
 
自动驾驶车上搭载的感测器收集到的数据,都会被传输到车载电脑中进行分析和处理,最终做出决策。对于车载电脑的技术部分我们不必多说,因为自动驾驶汽车单纯从原理上真的不算是什么“黑科技”,毕竟规划路线、躲避障碍的功能目前很多扫地机器人和无人机都有,所以还是把关注的重心聚焦在达成自动驾驶的困难点上。
 
自动驾驶汽车需要收集汽车周围数据,对资讯进行处理并最终做出决策,这整个过程与真人驾驶所要完成的过程几乎毫无差异。所以训练自动驾驶汽车的过程,其实就是个从新手到老驾驶的过程。

 

 
在人工智能技术的训练上,试错(Trial and error)是极为重要的方式之一,人工智能透过不断的试错与纠正得到进步。但这一方式换到了自动驾驶上却几乎不可行。行车时出现的事故往往是我们不能接受的,只要出了意外,轻则损失数千元,重则导致人命伤亡。自始至终,自动驾驶汽车的关键绝非“能否做到”,而是“能否做好”;所以目前的自动驾驶技术,大部分都是用来减低犯错机率的。
 
然而少量的测试则隐藏着巨大的安全隐忧,根据Google最近的资料,他们的58辆无人驾驶汽车合计跑了223万英里(约338万公里)才犯了一点小错,看上去出错的机率微乎其微,但乘上一个极大的基数,出现事故的数量仍然是我们不能承受的。
 
还有一个重要的问题是,自动驾驶若是想要覆盖更多地方,则要求收集和处理的资料就会越来越多,不同的路况会给车载电脑带来不同的处理变数。而当人类驾驶和自动驾驶车同时行驶在路上时,不确定性就更高了,自动驾驶车做出决策的难度也会大大增加。
 
尽管目前自动驾驶技术仍然还在发展,但已经给了人一个够美好的希望,那就是经过训练的自动驾驶车的驾驶技巧比人类更好、更符合规定、反应更快。很多目前交通系统上存在的顽疾也可能因为自动驾驶的到来迎刃而解。
 
自动驾驶从L2到L5是一个相对漫长的过程,现已发布的量产车型中有处于L3的奥迪A8、处于L2.5的Tesla、还有处于L2的凯迪拉克CT6等。L4会在2025年前普及。至于L5,可能不会有,因为造出一个全世界都能跑的车子性价比不高,L4对用户来说已经够了。

好文章,需要你的分享

文章来源:快驾驶 / 文章作者:未知
声明:本文来源“快驾驶”作者“未知”,版权归作者所有,不代表自动驾驶之家官方立场。转载请注明出处、作者和文章链接,如果有侵权,请联系删除。
收藏